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QM & p-Adic QM. Standard statistical model.

Let H be a separable complex Hilbert space.

State p of the QM system = density operator in H, p € &(H).
Let (X, X) be a measurable space.

Observable = projector-valued measure E on (X, X).

The probability distribution of the observable E in the state p is
defined by the Born-von Neumann formula

pu5(B) =TrpE(B),B € X.

(X,X) = (R, B(R)) = standard statistical model of QM.
(X,X) = (Qp, B(Qp)) = p-adic statistical model of QM.
R and Q, are Borel-isomorphic.



Example of the observable «inspired by p-adics».

o H =12 (Qp)
° (X,%)=(Zp,B(Zp))
o E(B)f(x) = hg(x)f(x),B € B(Zp),x € Zp,f €H
Let F: Z, — R be bounded measurable function.
Mp = / FOA)IE(N), Mef(x) = F()F(x), f € H.
ZP

ME is the bounded selfadjoint operator.
Let A denotes the C*-algebra generated by operators
E(B),B € B(Z,)

A~ C(Zp) ~ C (Cantor-like subset of R).

Spectrum of Mg is the Cantor-like subset of R («p-adic specrtum>
of My is Zp).



Quantum channels

Let H be a complex Hilbert space, B(#) the algebra of bounded
operators in % and T(H) the ideal of trace-class operators.
Channel ¢ = linear completely positive and trace-preserving map
o T(H) = T(H).

«Completely positive» means that ¢ ® Idy is positive for all
d=1,2,....



Quantum channels

@ Unitary channel
d[p] = UpU~!
@ von Neumann measurement
®[p] = >, EjpE;j. {Ej} — orthogonal resolution of the identity
e Entanglement-breaking channel
®p] = >_; S5 Tr pM;, {M;} — resolution of the identity
@ Kraus decomposition
Plp] =>_; VpV*, >, V'V =1



Additivity problem

x-capacity of ¢ (Holevo capacity):

G (®) :{sgp} (H <¢ ZW,‘/),‘]) Zﬂ’, (P [pi] )

Here H(p) = —Trplogp and {p;, 7} is a finite set of states
{p1,...pn} with probabilities {71, ...7,}.

Cy (¢®n) =7 nCy(®).
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p-adic symplectic geometry

Let F be a 2-dimentional linear space over Q,, A be a
non-degenerate antisymmetric (= symplectic) form on F.

o Lattice L = 2-dimentional Z, submodule of F,
L=p"Z, D p"Zp.

@ Dual lattice L* = {z € F,A(z,u) € ZpYu € L},
L*=p "2y @ p "Zp.

@ Selfdual lattice L = L*

@ Volume of L |L| =p~™ ", L= L*iff |[L| = 1.

e Symplectic group Sp(F) = SL>(Qp),
gL = |L|, g € Sp(F).



Weyl system = Representation of CCR.

The pair (W, H) is said to be the Weyl system if

o W: F — B(H)

o W(—z)=W*(z),ze F

o W(2)W(Z) = x(A(z,Z))W(Z)W(z),z,2 € F

@ V¢, € H the function < ¢, W(z)yp >: F — Cis measurable/

Here x(x) = exp (2mi{x}p), x € Qp.



The Bohner-Khinchin theorem |.

Function f : F — C is positive definite if Vz1,...,z, € F and
Vey,...,cp € C

Z c,-cff(z,- —2z)>0.

Function f : F — C is A-positive definite if Vz,...,z, € F and
Yer,...,cp e C

1
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Let p be a state in H, W be an irreducible representation of CCR.
p is uniquely defined by its characteristic function

7,(2) = Tr(pW(2)).



The Bohner-Khinchin theorem II.

m(z) is characteristic function of a quantum state iff

e 7(0) =1, m(z) is continuous at z = 0,

o m(z) is A-positive definite.

Theorem

Let L be a selfdual lattice F. Then V positive definite continuous at
z = 0 function 7(z) : w(0) = 1,supp7 C L, there exists unique
state p, such that

w(z) = Tr(p=W(z2)).

V state p in H there exists a unitary operator U in H such that
m,(z) = Tr (UpU~*W(z2)) has support in L and is positive definite
on L.




p-adic Guassian states |.

Definition

A state p is said to be (centered) p-adic Guassian state, if its
characteristic function 7, will be an indicator function of some
lattice L:

7, =Tr(pW(z)) = h.

Let F be the Fourier transform in L?(F) defined by the formula

FIf](z) = /F X (A(z,5)) (s)ds.
The following formula is valid
\L|7Y2F [h] = |L*| 7Y ?hy-.

We use the notation (L) for centered Gaussian state defined by
lattice L and (L, a) = W(a)y(L)W(—«) for general Gaussian
state.



p-adic Guassian states Il

Theorem

Indicator function h; of a lattice L defines a state iff |L| < 1.
Gaussian state p with characteristic function 7, = hy is |L|Py, here
Py is an orthogonal projector of rank 1/|L|.

| A

Theorem
The following statements are valid.
o Gaussian state is pure iff the lattice is selfdual.
e Entropy of Gaussian state equals — log |L|.
o Gaussian states p1 and p» are unitary equivalent iff |L1| = |Lz]|.
o

Gaussian state has maximun entropy among all states of fixed
rank p™ . m € Z...




p-adic channels

Let ®: p — ®[p] be a channel.

@ Linear Bosonic channel =

To[)(2) = mp(Kz)k(2),

K — linear transfornation of F, k: F — C.

@ Guassian channel = Bosonic channel with k(z) = h;(z) for
some L.

Let K be nondegenerate linear transformation of F, L be a lattice
in F, k(z) = h(z). The formula T¢[,)(2z) = 7,(Kz)k(z) defines a
channel iff

IL||1 - det K], < 1.




Additivity of the p-adic Gaussian channels

For the p-Adic Gaussian channel the additivity of the x-capacity
holds.

There are two possibilities
° (D[p] = Zael < ¢37P¢a > 'Y(K,L’ a)
Here {¢a,a € I} — orthogonal basis in H, K’ — symplectically
adjoint to K.
o O] =3, o, P UpUIP
{P% « € J} — orthogonal resolution of the identity.



p-adic channel with classical noise

p-adic channel with classical noise ®; = linear Bosonic channel
with K = Id and k(z) = h,|L| < 1.

Theorem

&, is an ideal measurement given by the following orthogonal
resolution of the identity (instrument)

E={E,,a€F/L"},

all E,, are of the same dimension |L|~!:

Ofp] = Y Eapo.
acF/L*

If L = L* the measurement is complete.



Entropy gain.

Minimal entropy gain

G(®) = inf (H (®[p]) — H(p))-

If det K £ 0 than the following equality holds

G(®P) = log | det K|,.




