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QM & p-Adic QM. Standard statistical model.

Let H be a separable complex Hilbert space.
State ρ of the QM system ≡ density operator in H, ρ ∈ S(H).
Let (X ,Σ) be a measurable space.
Observable ≡ projector-valued measure E on (X ,Σ).
The probability distribution of the observable E in the state ρ is
defined by the Born-von Neumann formula

µEρ (B) = TrρE (B),B ∈ Σ.

(X ,Σ) = (R,B(R)) ≡ standard statistical model of QM.
(X ,Σ) = (Qp,B(Qp)) ≡ p-adic statistical model of QM.
R and Qp are Borel-isomorphic.



Example of the observable «inspired by p-adics».

H = L2 (Qp)

(X ,Σ) = (Zp,B (Zp))

E (B)f (x) = hB(x)f (x),B ∈ B (Zp) , x ∈ Zp, f ∈ H

Let F : Zp → R be bounded measurable function.

MF =

∫
Zp

F (λ)dE (λ),MF f (x) = F (x)f (x), f ∈ H.

MF is the bounded selfadjoint operator.
Let A denotes the C ∗-algebra generated by operators
E (B),B ∈ B (Zp)

A ' C (Zp) ' C (Cantor-like subset of R) .

Spectrum of MF is the Cantor-like subset of R («p-adic specrtum»
of Mf is Zp).



Quantum channels

Let H be a complex Hilbert space, B(H) the algebra of bounded
operators in H and T(H) the ideal of trace-class operators.
Channel Φ ≡ linear completely positive and trace-preserving map
Φ: T(H)→ T(H).
«Completely positive» means that Φ⊗ Idd is positive for all
d = 1, 2, . . . .



Quantum channels

Unitary channel
Φ[ρ] = UρU−1

von Neumann measurement
Φ[ρ] =

∑
j EjρEj , {Ej} – orthogonal resolution of the identity

Entanglement-breaking channel
Φ[ρ] =

∑
j Sj Tr ρMj , {Mj} – resolution of the identity

Kraus decomposition
Φ[ρ] =

∑
j V ρV

∗,
∑

j V
∗V = 1



Additivity problem

χ-capacity of Φ (Holevo capacity):

Cχ(Φ) = sup
{ρi ,πi}

(
H

(
Φ

[∑
i

πiρi

])
−
∑
i

πiH (Φ [ρi ])

)
Here H(ρ) = −Tr ρ log ρ and {ρi , πi} is a finite set of states
{ρ1, . . . ρn} with probabilities {π1, . . . πn}.

Cχ
(
Φ⊗n

)
=? nCχ(Φ).

C.King (2001). Unital qubit channels.
P. Shor (2003). Entanglement-breaking channels.
C. King (2007). Hadamard channels.
M.Hastings (2009). Existence of channel breaking the
additivity conjecture.
A. Holevo (2015). Covariant Gaussian channels.



p-adic symplectic geometry

Let F be a 2-dimentional linear space over Qp, ∆ be a
non-degenerate antisymmetric (≡ symplectic) form on F .

Lattice L ≡ 2-dimentional Zp submodule of F ,
L = pmZp

⊕
pnZp.

Dual lattice L∗ ≡ {z ∈ F ,∆(z , u) ∈ Zp∀u ∈ L},
L∗ = p−nZp

⊕
p−mZp.

Selfdual lattice L = L∗

Volume of L |L| = p−m−n, L = L∗ iff |L| = 1.
Symplectic group Sp(F ) ≡ SL2(Qp),
|gL| = |L|, g ∈ Sp(F ).



Weyl system ≡ Representation of CCR.

Definition
The pair (W ,H) is said to be the Weyl system if

W : F → B(H)

W (−z) = W ∗(z), z ∈ F

W (z)W (z ′) = χ(∆(z , z ′))W (z ′)W (z), z , z ′ ∈ F

∀φ, ψ ∈ H the function < φ,W (z)ψ > : F → C is measurable

Here χ(x) = exp (2πi{x}p), x ∈ Qp.



The Bohner-Khinchin theorem I.

Function f : F → C is positive definite if ∀z1, . . . , zn ∈ F and
∀c1, . . . , cn ∈ C ∑

i

cic
∗
j f (zi − zj) ≥ 0.

Function f : F → C is ∆-positive definite if ∀z1, . . . , zn ∈ F and
∀c1, . . . , cn ∈ C∑

i

cic
∗
j f (zi − zj)χ

(
1

2
∆(zi , zj)

)
≥ 0.

Let ρ be a state in H, W be an irreducible representation of CCR.
ρ is uniquely defined by its characteristic function

πρ(z) = Tr(ρW (z)).



The Bohner-Khinchin theorem II.

Theorem
π(z) is characteristic function of a quantum state iff

π(0) = 1, π(z) is continuous at z = 0,
π(z) is ∆-positive definite.

Theorem
Let L be a selfdual lattice F . Then ∀ positive definite continuous at
z = 0 function π(z) : π(0) = 1, suppπ ⊂ L , there exists unique
state ρπ such that

π(z) = Tr (ρπW (z)) .

∀ state ρ in H there exists a unitary operator U in H such that
πρ(z) = Tr

(
UρU−1W (z)

)
has support in L and is positive definite

on L.



p-adic Guassian states I.

Definition
A state ρ is said to be (centered) p-adic Guassian state, if its
characteristic function πρ will be an indicator function of some
lattice L:

πρ = Tr (ρW (z)) = hL.

Let F be the Fourier transform in L2(F ) defined by the formula

F [f ] (z) =

∫
F
χ (∆(z , s)) f (s)ds.

The following formula is valid

|L|−1/2F [hL] = |L∗|−1/2hL∗ .

We use the notation γ(L) for centered Gaussian state defined by
lattice L and γ(L, α) = W (α)γ(L)W (−α) for general Gaussian
state.



p-adic Guassian states II.

Theorem
Indicator function hL of a lattice L defines a state iff |L| ≤ 1.
Gaussian state ρ with characteristic function πρ = hL is |L|PL, here
PL is an orthogonal projector of rank 1/|L|.

Theorem
The following statements are valid.

Gaussian state is pure iff the lattice is selfdual.
Entropy of Gaussian state equals − log |L|.
Gaussian states ρ1 and ρ2 are unitary equivalent iff |L1| = |L2|.
Gaussian state has maximun entropy among all states of fixed
rank pm,m ∈ Z+.



p-adic channels

Let Φ: ρ→ Φ[ρ] be a channel.

Linear Bosonic channel ≡

πΦ[ρ](z) = πρ(Kz)k(z),

K – linear transfornation of F , k : F → C.
Guassian channel ≡ Bosonic channel with k(z) = hL(z) for
some L.

Theorem
Let K be nondegenerate linear transformation of F , L be a lattice
in F , k(z) = hL(z). The formula πΦ[ρ](z) = πρ(Kz)k(z) defines a
channel iff

|L||1− detK |p ≤ 1.



Additivity of the p-adic Gaussian channels

Theorem
For the p-Adic Gaussian channel the additivity of the χ-capacity
holds.

There are two possibilities
Φ[ρ] =

∑
a∈I < φa, ρφa > γ(K ′L, a)

Here {φa, a ∈ I} – orthogonal basis in H, K ′ – symplectically
adjoint to K .
Φ[ρ] =

∑
α∈J P

αUρU−1Pα

{Pα, α ∈ J} – orthogonal resolution of the identity.



p-adic channel with classical noise

p-adic channel with classical noise ΦL ≡ linear Bosonic channel
with K = Id and k(z) = hL, |L| ≤ 1.

Theorem
ΦL is an ideal measurement given by the following orthogonal
resolution of the identity (instrument)

E = {Eα, α ∈ F/L∗},

all Eα are of the same dimension |L|−1:

ΦL[ρ] =
∑

α∈F/L∗
EαρEα.

If L = L∗ the measurement is complete.



Entropy gain.

Minimal entropy gain

G (Φ) = inf
ρ

(H (Φ[ρ])− H(ρ)) .

Theorem
If detK 6= 0 than the following equality holds

G (Φ) = log | detK |p.


