p-adic Quantum Mechanics and Quantum Channels

Evgeny Zelenov

Steklov Mathematical Institute

Belgrad, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- QM & p-Adic QM.
- Quantum channels.
- Additivity problem.
- Representation of CCR (Weyl system).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- The Bohner-Khinchin theorem.
- p-Adic Gaussian states.
- p-Adic Bosonic channels.
- Entropy gain.

Let \mathcal{H} be a separable complex Hilbert space. State ρ of the QM system \equiv density operator in \mathcal{H} , $\rho \in \mathfrak{S}(\mathcal{H})$. Let (X, Σ) be a measurable space. Observable \equiv projector-valued measure E on (X, Σ) . The probability distribution of the observable E in the state ρ is defined by the Born-von Neumann formula

$$\mu_{\rho}^{\mathsf{E}}(B) = \mathrm{T}r\rho \mathsf{E}(B), B \in \Sigma.$$

 $(X, \Sigma) = (\mathbb{R}, \mathcal{B}(\mathbb{R})) \equiv$ standard statistical model of QM. $(X, \Sigma) = (\mathbb{Q}_p, \mathcal{B}(\mathbb{Q}_p)) \equiv p$ -adic statistical model of QM. \mathbb{R} and \mathbb{Q}_p are Borel-isomorphic.

Example of the observable «inspired by p-adics».

•
$$\mathcal{H} = L^2(\mathbb{Q}_p)$$

•
$$(X, \Sigma) = (\mathbb{Z}_p, \mathcal{B}(\mathbb{Z}_p))$$

•
$$E(B)f(x) = h_B(x)f(x), B \in \mathcal{B}(\mathbb{Z}_p), x \in \mathbb{Z}_p, f \in \mathcal{H}$$

Let $F : \mathbb{Z}_p \to \mathbb{R}$ be bounded measurable function.

$$M_F = \int_{\mathbb{Z}_p} F(\lambda) dE(\lambda), M_F f(x) = F(x) f(x), f \in \mathcal{H}.$$

 M_F is the bounded selfadjoint operator. Let A denotes the C*-algebra generated by operators $E(B), B \in \mathcal{B}(\mathbb{Z}_p)$

$$A \simeq C(\mathbb{Z}_p) \simeq C$$
 (Cantor-like subset of \mathbb{R}).

Spectrum of M_F is the Cantor-like subset of \mathbb{R} («*p*-adic spectrum» of M_f is \mathbb{Z}_p).

Let \mathcal{H} be a complex Hilbert space, $\mathfrak{B}(\mathcal{H})$ the algebra of bounded operators in \mathcal{H} and $\mathfrak{T}(\mathcal{H})$ the ideal of trace-class operators. **Channel** $\Phi \equiv$ linear completely positive and trace-preserving map $\Phi \colon \mathfrak{T}(\mathcal{H}) \to \mathfrak{T}(\mathcal{H})$. «Completely positive» means that $\Phi \otimes \mathrm{Id}_d$ is positive for all $d = 1, 2, \ldots$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Unitary channel $\Phi[\rho] = U\rho U^{-1}$
- von Neumann measurement $\Phi[\rho] = \sum_{j} E_{j}\rho E_{j}, \{E_{j}\} - \text{orthogonal resolution of the identity}$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Entanglement-breaking channel $\Phi[\rho] = \sum_{j} S_{j} \operatorname{Tr} \rho M_{j}, \{M_{j}\} - \text{resolution of the identity}$
- Kraus decomposition $\Phi[\rho] = \sum_{j} V \rho V^*, \sum_{j} V^* V = 1$

 χ -capacity of Φ (Holevo capacity):

$$C_{\chi}(\Phi) = \sup_{\{\rho_i, \pi_i\}} \left(H\left(\Phi\left[\sum_i \pi_i \rho_i\right]\right) - \sum_i \pi_i H\left(\Phi\left[\rho_i\right]\right) \right)$$

Here $H(\rho) = -\operatorname{Tr} \rho \log \rho$ and $\{\rho_i, \pi_i\}$ is a finite set of states $\{\rho_1, \dots, \rho_n\}$ with probabilities $\{\pi_1, \dots, \pi_n\}$.

$$C_{\chi}\left(\Phi^{\otimes n}\right)=^{?}nC_{\chi}(\Phi).$$

- C. King (2001). Unital qubit channels.
- P. Shor (2003). Entanglement-breaking channels.
- C. King (2007). Hadamard channels.
- M. Hastings (2009). Existence of channel breaking the additivity conjecture.
- A. Holevo (2015). Covariant Gaussian channels.

Let F be a 2-dimentional linear space over \mathbb{Q}_p , Δ be a non-degenerate antisymmetric (\equiv symplectic) form on F.

- Lattice $L \equiv 2$ -dimensional \mathbb{Z}_p submodule of F, $L = p^m \mathbb{Z}_p \bigoplus p^n \mathbb{Z}_p$.
- Dual lattice $L^* \equiv \{z \in F, \Delta(z, u) \in \mathbb{Z}_p \forall u \in L\},\ L^* = p^{-n} \mathbb{Z}_p \bigoplus p^{-m} \mathbb{Z}_p.$
- Selfdual lattice L = L*
- Volume of $L |L| = p^{-m-n}$, $L = L^*$ iff |L| = 1.

うして ふゆう ふほう ふほう うらつ

• Symplectic group $Sp(F) \equiv SL_2(\mathbb{Q}_p)$, $|gL| = |L|, g \in Sp(F)$.

Definition

The pair (W, \mathcal{H}) is said to be the Weyl system if

•
$$W \colon F \to \mathfrak{B}(\mathcal{H})$$

•
$$W(-z) = W^*(z), z \in F$$

•
$$W(z)W(z') = \chi(\Delta(z,z'))W(z')W(z), z, z' \in F$$

• $\forall \phi, \psi \in \mathcal{H}$ the function $\langle \phi, W(z)\psi \rangle \colon F \to \mathbb{C}$ is measurable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here $\chi(x) = \exp(2\pi i \{x\}_p)$, $x \in \mathbb{Q}_p$.

Function $f: F \to \mathbb{C}$ is positive definite if $\forall z_1, \dots, z_n \in F$ and $\forall c_1, \dots, c_n \in \mathbb{C}$ $\sum_i c_i c_j^* f(z_i - z_j) \ge 0.$

Function $f: F \to \mathbb{C}$ is Δ -positive definite if $\forall z_1, \ldots, z_n \in F$ and $\forall c_1, \ldots, c_n \in \mathbb{C}$

$$\sum_i c_i c_j^* f(z_i - z_j) \chi\left(\frac{1}{2}\Delta(z_i, z_j)\right) \geq 0.$$

Let ρ be a state in \mathcal{H} , W be an irreducible representation of CCR. ρ is uniquely defined by its characteristic function

$$\pi_{\rho}(z) = \mathrm{T}r(\rho W(z)).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Theorem

 $\pi(z)$ is characteristic function of a quantum state iff

- $\pi(0) = 1$, $\pi(z)$ is continuous at z = 0,
- $\pi(z)$ is Δ -positive definite.

Theorem

Let L be a selfdual lattice F. Then \forall positive definite continuous at z = 0 function $\pi(z) : \pi(0) = 1$, supp $\pi \subset L$, there exists unique state ρ_{π} such that

$$\pi(z) = \mathrm{T}r\left(\rho_{\pi}W(z)\right).$$

 \forall state ρ in \mathcal{H} there exists a unitary operator U in \mathcal{H} such that $\pi_{\rho}(z) = \operatorname{Tr} \left(U \rho U^{-1} W(z) \right)$ has support in L and is positive definite on L.

p-adic Guassian states I.

Definition

A state ρ is said to be (centered) *p*-adic Guassian state, if its characteristic function π_{ρ} will be an indicator function of some lattice *L*:

 $\pi_{\rho} = \operatorname{Tr}\left(\rho W(z)\right) = h_{L}.$

Let \mathcal{F} be the Fourier transform in $L^2(F)$ defined by the formula

$$\mathcal{F}[f](z) = \int_{F} \chi(\Delta(z,s)) f(s) ds.$$

The following formula is valid

$$|L|^{-1/2}\mathcal{F}[h_L] = |L^*|^{-1/2}h_{L^*}.$$

We use the notation $\gamma(L)$ for centered Gaussian state defined by lattice L and $\gamma(L, \alpha) = W(\alpha)\gamma(L)W(-\alpha)$ for general Gaussian state.

Theorem

Indicator function h_L of a lattice L defines a state iff $|L| \le 1$. Gaussian state ρ with characteristic function $\pi_{\rho} = h_L$ is $|L|P_L$, here P_L is an orthogonal projector of rank 1/|L|.

Theorem

The following statements are valid.

- Gaussian state is pure iff the lattice is selfdual.
- Entropy of Gaussian state equals $-\log |L|$.
- Gaussian states ρ_1 and ρ_2 are unitary equivalent iff $|L_1| = |L_2|$.
- Gaussian state has maximun entropy among all states of fixed rank $p^m, m \in \mathbb{Z}_+$.

p-adic channels

Let $\Phi \colon \rho \to \Phi[\rho]$ be a channel.

• Linear Bosonic channel \equiv

$$\pi_{\Phi[\rho]}(z) = \pi_{\rho}(Kz)k(z),$$

K – linear transformation of F, $k \colon F \to \mathbb{C}$.

 Guassian channel ≡ Bosonic channel with k(z) = h_L(z) for some L.

Theorem

Let K be nondegenerate linear transformation of F, L be a lattice in F, $k(z) = h_L(z)$. The formula $\pi_{\Phi[\rho]}(z) = \pi_{\rho}(Kz)k(z)$ defines a channel iff

$$|L||1 - \det K|_p \le 1.$$

Theorem

For the p-Adic Gaussian channel the additivity of the χ -capacity holds.

There are two possibilities

 Φ[ρ] = ∑_{a∈I} < φ_a, ρφ_a > γ(K'L, a) Here {φ_a, a ∈ I} - orthogonal basis in H, K' - symplectically adjoint to K.

うして ふゆう ふほう ふほう うらつ

• $\Phi[\rho] = \sum_{\alpha \in J} P^{\alpha} U \rho U^{-1} P^{\alpha} \{P^{\alpha}, \alpha \in J\}$ - orthogonal resolution of the identity.

p-adic channel with classical noise $\Phi_L \equiv$ linear Bosonic channel with K = Id and $k(z) = h_L, |L| \le 1$.

Theorem

 Φ_L is an ideal measurement given by the following orthogonal resolution of the identity (instrument)

$$E = \{E_{\alpha}, \alpha \in F/L^*\},\$$

all E_{α} are of the same dimension $|L|^{-1}$:

$$\Phi_L[\rho] = \sum_{\alpha \in F/L^*} E_\alpha \rho E_\alpha.$$

うして ふゆう ふほう ふほう うらつ

If $L = L^*$ the measurement is complete.

Minimal entropy gain

$$G(\Phi) = \inf_{\rho} \left(H\left(\Phi[\rho]\right) - H(\rho) \right).$$

Theorem

If det $K \neq 0$ than the following equality holds

 $G(\Phi) = \log |\det K|_p.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●