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Hierarchical approximations for complex systems,
Hierarchy — trees, buildings, wavelets,
ultrametric analysis, p-adic numbers.

Wavelets — hierarchical function representations.

Clustering — trees,
Multiclustering — buildings.

Spin glasses — Parisi matrix, p-adic parameters.

Protein structure, DNA packing.

Protein dynamics — p-adic diffusion.

Genetic code — 2-adic plane.

Deep learning — hierarchical models in machine learning.



Wavelets
Basis of wavelets in L2(R).
Standard parameterization — by translations and dilations.

ψjn(x) = 2j/2ψ
(
2jx − n

)
, x ∈ R, j , n ∈ Z.

The function ψ(x) is called a wavelet. The first example is the
Haar wavelet (difference of two characteristic functions)

ψ(x) = χ[0,1/2)(x)− χ[1/2,1](x).

The pair (j , n) of indices of wavelets actually is a parameter on a
tree. To see this it is easier to consider wavelets on a half–line
x ≥ 0, when n ≥ 0.



Tree of balls
Balls in ultrametric space can be considered as vertices of a tree
(the tree of balls). Balls are vertices, edges connect balls
embedded without intermediary balls.

p-Adic numbers Qp — balls are in one to one correspondence with⋃
j∈Z

Qp/pjZp.

Any ball has a form

pj (n + Zp) , n =
−1∑
l=a

nlp
l , nl ∈ {0, 1, . . . , p − 1},

a is a negative integer, Zp is the ring of p-adic integers (unit ball).
Here n can be considered as a parameter in Qp/Zp.



The Monna map
p-Adic parametrization of positive integers (one to one map)

Qp/Zp → Z+,

−1∑
l=a

nlp
l 7→

−1∑
l=a

nlp
−l−1.

Small p-adic distances map to small real distances.

Applying this construction (for p = 2) to the set of indices (j , n) of
wavelet coefficients on positive half–line we get:
wavelet coefficients are vertices in 2-adic tree of balls.
Already real wavelets are hierarchical.



p-Adic wavelets
Basis of wavelets in L2(Qp).

ψk;jn(x) = pj/2ψk

(
p−jx − n

)
,

x ∈ Qp, j ∈ Z, n ∈ Qp/Zp, k ∈ {1, . . . , p − 1}.

Example:

ψk(x) = ψ(kx), ψ(x) = χ(p−1x)Ω(|x |p),

where Ω(x) is a characteristic function of [0, 1] (thus Ω(|x |p) is a
characteristic function of the unit ball Zp), and χ is the character

χ(x) = e2πi{x}, {x} =
−1∑
l=a

xlp
l , x =

∞∑
l=a

xlp
l .

S.V. Kozyrev, Wavelet theory as p-adic spectral analysis, Izvestiya:
Mathematics, 2002, 66 no 2, 367–376.



Clustering
Clustering is method of hierarchical classification of data.

Data is labeled by a hierarchical system (tree, or dendrogram) of
clusters. Typical approach (k–means clustering, nearest neighbor
clustering) — clusters are generated using some metric in the data.

Can be used for unsupervised learning — extracting of information
from unlabeled data.

Multiclustering — several systems of clusters on the same data. In
particular, when we have a family of metrics on the data, different
metrics generate different cluster trees.

In a typical situation this generates a network of clusters with
cycles — cycles are generated when clusters with respect to
different metrics coincide as sets.

p-Adic case: cluster networks are related to affine Bruhat–tits
buildings.
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Clustering in life sciences: the tree of life
Carl von Linne, Systema Naturae, 1735

Ribosomal phylogenetic tree
Carl Woese, 1977, 1985



Phylogenetic network

Contains cycles — relation to multiclustering.



Spin glasses
Replica symmetry breaking — hierarchical Parisi matrix (Qab),
built by iterative procedure

(
0 q1

q1 0

)
,


0 q1 q2 q2

q1 0 q2 q2

q2 q2 0 q1

q2 q2 q1 0

 ,



0 q1 q2 q2 q3 q3 q3 q3

q1 0 q2 q2 q3 q3 q3 q3

q2 q2 0 q1 q3 q3 q3 q3

q2 q2 q1 0 q3 q3 q3 q3

q3 q3 q3 q3 0 q1 q2 q2

q3 q3 q3 q3 q1 0 q2 q2

q3 q3 q3 q3 q2 q2 0 q1

q3 q3 q3 q3 q2 q2 q1 0


qi > 0 are real (and positive) parameters.



Monna map — reshuffling of rows and columns of the Parisi
matrix pN × pN (above p = 2 and N = 1, 2, 3)

l : {1, . . . , pN} → p−NZ/Z,

l−1 :
−1∑

j=−N
xjp

j 7→ 1 + p−1
−1∑

j=−N
xjp
−j .

Matrix elements Qab of the Parisi matrix is a function of p-adic
distance between l(a) and l(b):

Qab = q(|l(a)− l(b)|p),

where q(pk) = qk , q(0) = 0, k = 1, . . . ,N.
p−NZ/Z is a group of fractions {

∑−1
j=−N xjp

j}, xj = 0, . . . , p − 1
with the addition modulo 1.
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Proteins
Protein is a peptide chain (chain of amino acids) folded in a
compact globule (native state)

Myoglobin

Hierarchical structure of protein globules.



Protein globules are analogous to Peano curves —
space–filling curves with hierarchical structure.

DNA packing is also dense and hierarchical

A.Yu. Grosberg, S.K. Nechaev, E.I. Shakhnovich, The role of
topological constraints in the kinetics of collapse of
macromolecules. J Phys. France 1988; 49:2095–2100.



Dynamics on energy landscapes and protein dynamics
Diffusion in a potential

∂

∂t
f (x , t) = ∆f (x , t) + β∇f (x , t) · ∇U(x) + βf (x , t)∆U(x)

f (x , t) – distribution function
U – potential, β = 1/kT – inverse temperature.

Approximation by the Arrhenius transitions between the local
energy minima

d

dt
f (a, t) =

∑
b

(Qabf (b, t)− Qbaf (a, t)) .



the Arrhenius formula — the transition rate is proportional to

exp(−β∆E ), ∆E = E1 − E0

∆E – activation barrier.



Complex energy landscapes — many local minima.

Three local minima – two transition states.
Hierarchy of transition states.

Example: local minima A, B, C ,
transition state with energy E1 between A and B,
transition state with energy E2 between (A, B) and C , E1 < E2

Hierarchical matrix of transition energies 0 E1 E2

E1 0 E2

E2 E2 0

 .



General case — disconnectivity graph of local minima and
transition states. Hierarchy of basins (branches of the tree) —
interbasin kinetics.

O. M. Becker, M. Karplus, The Topology of Multidimensional
Protein Energy Surfaces: Theory and Application to Peptide
Structure and Kinetics, J. Chem.Phys., 1997, V.106, P.1495–1517.



Example: p-Adic diffusion equation

∂

∂t
f (x , t) + Dα

x f (x , t) = 0

with the Vladimirov fractional operator

Dα
x f (x , t) = Γ−1p (−α)

∫
Qp

f (x , t)− f (y , t)

|x − y |1+αp

dµ(x)

α is proportional to inverse temperature α = βk.
— describes the relaxation of a protein.
x — conformation parameter.

V.A.Avetisov, A.H.Bikulov, S.V.Kozyrev, V.A.Osipov, p-Adic
Models of Ultrametric Diffusion Constrained by Hierarchical
Energy Landscapes. J. Phys. A: Math. Gen. 2002. V.35. N.2.
P.177–189, arXiv:cond-mat/0106506



Genetic code — 2-dimensional 2-adic parametrization describing
the degeneracy of the code

Lys

Asn

Glu

Asp

Ter

Ser
Gly

Ter

Tyr

Gln

His

Trp

Cys
Arg

Met

Ile
Val Thr Ala

Leu

Phe
Leu Ser Pro



Humanitarian sciences: Syntax, music, etc.
Hierarchical syntax markup — we speak in a hierarchical way



Music — sounds (notes) and musical phrases have lengths
equal to degrees of two;

musical phrases have hierarchical 2-adic structure
(phrase is a combination of smaller phrases);

repetition of phrases (with small modification) —
2-adic local constancy or 2-adic Lipschitz condition.



Analogy with syntax markup

A.D. Patel, Language, music, syntax and the brain. Nature
Neuroscience. (2003). 6, 674–681.



Possible applications to learning
In machine learning, generative models are used for modeling of
data. To reduce computations it is important to use simple
generative models.

Kolmogorov complexity —
the length of the shortest description of the object.

In particular, for natural number N
the Kolmogorov complexity is estimated from above by 10 lg N
(the possible number of digits in the expansion over degrees of 10).

This positional notation for natural numbers is hierarchical.
Analogous approach can be applied for function approximations
using wavelets (i.e. compression), etc.

Hierarchy is a general method for controlling complexity.

Deep learning — hierarchical multilayer neural networks. Recent
achievements in machine learning are related to hierarchical
function representations.



Summary
Wavelets — hierarchical family of functions
(tree of balls, the Monna map)

Clustering and multiclustering — trees and buildings

Spin glasses — the Parisi matrix, p-adic parameters

Protein structure, DNA packing

Protein dynamics — p-adic diffusion

Genetic code — 2-adic plane

Hierarchy, Kolmogorov complexity, deep learning.


