Fuglede Conjecture on \mathbb{Q}_p

Shilei FAN (Central China Normal University)
Joint work with Ai-Hua FAN, Lingmin LIAO and Ruxi SHI

International Conference on p-adic Mathematical Physics and Its Application,
Belgrade, Serbia

September 8, 2015
Outline

Question

Preliminaries

Fuglede Conjecture for Compact Open Set in \mathbb{Q}_p
 Geometry of Compact Open Spectral Set
 Spectra and Translates

Fuglede Conjecture on \mathbb{Q}_p
Outline

Question

Preliminaries

Fuglede Conjecture for Compact Open Set in \mathbb{Q}_p
Geometry of Compact Open Spectral Set
Spectra and Translates

Fuglede Conjecture on \mathbb{Q}_p
Spectral set

- A character of a local compact abelian group G is a group homomorphism $\chi : G \to S^1$, i.e. $\chi(g_1 + g_2) = \chi(g_1)\chi(g_2)$ and $\chi(0) = 1$.
- \hat{G}: the dual group which consists of all the characters of G.
- A subset $\Omega \subset G$ of finite Haar Measure is said to be spectral if there exists a set $\Lambda \subset \hat{G}$ which form a Hilbert basis of $L^2(\Omega)$. The set Λ is called a spectrum of Ω and (Ω, Λ) is called a spectral pair.
For an element $x \in G$,

$$\Omega + x := \{ y + x \in G : y \in \Omega \}.$$

We say that the set Ω tiles G by translation, if there exists a set $T \subset G$ such that $\{ \Omega + t : t \in T \}$ forms a partition a.e. of G, equivalently,

$$\sum_{t \in T} 1_{\Omega}(x - t) = 1, \quad a.e. \quad x \in G.$$

The set T is called a translate of Ω and (Ω, T) is called a tiling pair.
Spectral set conjecture

Question

Ω is a spectral set if and only if it tiles G?

- The case $G = \mathbb{Z}$ is open. The case $G = \mathbb{Z}/p^n\mathbb{Z}$ is true.
- The case $G = \mathbb{R}^d$ is the famous Fuglede conjecture.
 - The conjecture is not true for $d \geq 3$ (both direction). For $d = 5$, Terence Tao gave a counterexample in 2004. For $d = 3, 4$, Matolsci and Kolountzakis (2006) were able to use Tao’s idea to give counterexamples and showed that both implications of Fuglede’s fail.
 - It is still open for $d = 1, 2$. It is true for convex planer sets (Katz and Tao). For $d = 1$, Laba, Lagarias, Wang….
- How about the case $G = \mathbb{Q}_p^d$? We confirm the conjecture when $d = 1$.
Outline

Question

Preliminaries

Fuglede Conjecture for Compact Open Set in \mathbb{Q}_p
Geometry of Compact Open Spectral Set
Spectra and Translates

Fuglede Conjecture on \mathbb{Q}_p
Notation

- \mathbb{Q}_p: the field of p-adic numbers.
- \mathbb{Z}_p: the ring of p-adic integers.
- m or dx: the Haar measure on \mathbb{Q}_p such that $m(\mathbb{Z}_p) = 1$.
- Any $x \in \mathbb{Q}_p$ can be written as

$$x = \sum_{n=\nu_p(x)} a_n p^n \quad (\nu_p(x) \in \mathbb{Z}, a_n \in \{0, 1, \ldots, p-1\} \text{ and } a_{\nu_p(x)} \neq 0).$$

The fractional part $\{x\}$ of x is defined to be $\sum_{n=\nu_p(x)}^{-1} a_n p^n$.

- Pontryagin duality theorem: the dual group $\hat{\mathbb{Q}}_p$ of \mathbb{Q}_p is isomorphic to \mathbb{Q}_p.
Dual group of \mathbb{Q}_p

- Fix the following character $\chi \in \widehat{\mathbb{Q}}_p$:

$$\chi(x) = e^{2\pi i \{x\}}.$$

Notice: χ is a local constant function ($\chi(x) = 1$, if $x \in \mathbb{Z}_p$).

- For any $y \in \mathbb{Q}_p$, we define

$$\chi_y(x) = \chi(yx).$$

The map $y \mapsto \chi_y$ from \mathbb{Q}_p onto $\widehat{\mathbb{Q}}_p$ is an isomorphism.
Fourier transform

For \(f \in L^1(\mathbb{Q}_p) \), the Fourier transform of \(f \) is defined to be

\[
\hat{f}(y) = \int_{\mathbb{Q}_p} f(x) \overline{\chi_y}(x) \, dx.
\]

Example

\[
\hat{1_{B(0,p^\gamma)}}(\xi) = p^\gamma 1_{B(0,p^{-\gamma})}(\xi)
\]

\[
\hat{\bigcup_{j=1}^\infty B(c_j, p^\gamma)}(\xi) = p^\gamma 1_{B(0,p^{-\gamma})}(\xi) \sum_j \chi(-c_j \xi).
\]

Lemma (A criterion of spectral set)

A Borel set \(\Omega \) of finite haar measure is a spectral set with \(\Lambda \) as a spectrum iff

\[
\forall \xi \in \widehat{\mathbb{Q}_p}, \sum_{\lambda \in \Lambda} |\hat{1_{\Omega}}(\lambda - \xi)|^2 = m(\Omega)^2.
\]
Tree structure of \mathbb{Q}_p

Vertices \mathcal{T}: balls in \mathbb{Q}_p.

Edges \mathcal{E}: pairs $(B', B) \in \mathcal{T} \times \mathcal{T}$ such that $B' \subset B$, $m(B) = pm(B')$, denote by $B' \prec B$.

\[\mathbb{Z}_p \]
\[p\mathbb{Z}_p \]
\[p^2\mathbb{Z}_p \]
\[(p - 1)p + p^2\mathbb{Z}_p \]
\[(p - 1)+ p\mathbb{Z}_p \]
\[(p - 1)+ p^2\mathbb{Z}_p \]
\[p^2 - 1 + p^2\mathbb{Z}_p \]
\[\frac{1}{p}\mathbb{Z}_p \]

Bounded open sets in \mathbb{Q}_p

Any bounded open set O of \mathbb{Q}_p can be described by a subtree (T_O, E_O) of (T, E).

- Let B^* be the smallest ball containing O, which will be the root of the tree. For any given ball B contained in O, there is a unique sequence of balls B_0, B_1, \cdots, B_r such that

 $$B = B_0 \prec B_1 \prec B_2 \prec \cdots \prec B_r = B^*.$$

- The set of vertices T_O is composed of all such balls B_0, B_1, \cdots, B_r for all possible balls B contained in O.

- The set of edges E_O is composed of all edges $B_i \prec B_{i+1}$ as above.
Any compact open set can be described by a finite tree, because a compact open set is a disjoint finite union of balls of same size. In this case, as in the above construction of subtree we only consider these balls of same size as B.

Figure: $\Omega = 3\mathbb{Z}_3 \sqcup (2 + 3\mathbb{Z}_3) \sqcup (4 + 27\mathbb{Z}_3) \sqcup (22 + 27\mathbb{Z}_3)$.
p-homogenous subsets in \(\mathbb{Q}_p \)

- A subtree \((T', E')\) is said to be homogeneous if the number of descendants of \(B \in T'\) depends only on \(|B|\). If this number is either 1 or \(p\), we call \((T', E')\) a \(p\)-homogeneous tree.
- An bounded open set is said to be homogeneous (resp. \(p\)-homogeneous) if the corresponding tree is homogeneous (resp. \(p\)-homogeneous).
- A bounded open \(p\)-homogenous set must be compact.
p-homogenous subsets in \mathbb{Q}_p

Figure: A 2-homogenous tree
Outline

Question

Preliminaries

Fuglede Conjecture for Compact Open Set in \mathbb{Q}_p
Geometry of Compact Open Spectral Set
Spectra and Translates

Fuglede Conjecture on \mathbb{Q}_p
Question

Preliminaries

Fuglede Conjecture for Compact Open Set in \mathbb{Q}_p

Geometry of Compact Open Spectral Set

Spectra and Translates

Fuglede Conjecture on \mathbb{Q}_p
Tree structure of $\mathbb{Z}/p^\gamma \mathbb{Z}$

We identify $\mathbb{Z}/p^\gamma \mathbb{Z} = \{0, 1, \cdots, p^\gamma - 1\}$ with $\{0, 1, 2, \cdots p - 1\}^\gamma$ which is considered as a finite tree, denoted by $\mathcal{T}(\gamma)$.

- **Vertices** $\mathcal{T}(\gamma)$: consists of the disjoint union of the sets $\mathbb{Z}/p^n\mathbb{Z}, 0 \leq n \leq \gamma$. Each vertex, except the root of the tree, is identified with a sequence $t_0t_1\cdots t_n$ with $0 \leq n \leq \gamma$ and $t_i \in \{0, 1, \cdots, p - 1\}$.

- **Edges**: consists of pairs $(x, y) \in \mathbb{Z}/p^n\mathbb{Z} \times \mathbb{Z}/p^{n+1}\mathbb{Z}$ with $x \equiv y \mod p^n$, where $0 \leq n \leq \gamma - 1$.

For example, each point t of $\mathbb{Z}/p^\gamma \mathbb{Z}$ is identified with $t_0t_1\cdots t_{\gamma-1}$, which is a boundary point of the tree.
Tree structure of $\mathbb{Z}/p^\gamma \mathbb{Z}$

Figure: The set $\mathbb{Z}/3^4 \mathbb{Z} = \{0, 1, 2, \cdots, 80\}$ is considered as a tree $\mathcal{T}^{(4)}$.
p-homogenous subsets $\mathbb{Z}/p^\gamma \mathbb{Z}$

Each subset $C \subset \mathbb{Z}/p^\gamma \mathbb{Z}$ will determine a subtree of $T^{(\gamma)}$, denoted by T_C, which consists of the paths from the root to the points in C. For each $0 \leq n \leq \gamma$, denote

$$C_{\text{mod } p^n} := \{x \in \mathbb{Z}/p^n\mathbb{Z} : \exists y \in C, \text{ such that } x \equiv y \mod p^n\}.$$

- **Vertices** T_C: consists of the disjoint union of the sets $C_{\text{mod } p^n}$, $0 \leq n \leq \gamma$.

- **Edges**: consists of pairs $(x, y) \in C_{\text{mod } p^n} \times C_{\text{mod } p^{n+1}}$ with $x \equiv y \mod p^n$, where $0 \leq n \leq \gamma - 1$.

The set C is called a p-homogenous subsets of $\mathbb{Z}/p^\gamma \mathbb{Z}$ iff the corresponding tree T_C is p-homogenous.
p-homogenous subsets $\mathbb{Z}/p^\gamma\mathbb{Z}$

Figure: For $p = 3, \gamma = 2$, the tree p-homogeneous tree determined by \{0, 4, 8, 9, 13, 17, 18, 22, 26\}.
Spectral sets and tiles in $\mathbb{Z}/p^\gamma \mathbb{Z}$

Recall that the Fourier transform of a function f defined on $\mathbb{Z}/p^\gamma \mathbb{Z}$ is defined as

$$\hat{f}(k) = \sum_{x \in \mathbb{Z}/p^\gamma \mathbb{Z}} f(x) e^{-\frac{2\pi i k x}{p^\gamma}}, (\forall k \in \mathbb{Z}/p^\gamma \mathbb{Z}).$$

Theorem (Fan-F-Shi) Let $C \in \mathbb{Z}/p^\gamma \mathbb{Z}$. The following statements are equivalent.

1. C is p-homogenous.
2. For any $1 \leq i \leq \gamma$, $\#(C_{\text{mod } p^i}) = p^{k_i}$, for some $k_i \in \mathbb{N}$.
3. There exists a subset $I \subset \mathbb{N}$ such that $\#I = \log_p(\#C)$ and $\hat{1}_C(p^\ell) = 0$ for $\ell \in I$.
4. C tiles $\mathbb{Z}/p^\gamma \mathbb{Z}$.
5. C is a spectral set in $\mathbb{Z}/p^\gamma \mathbb{Z}$.
Spectral sets and tiles in $\mathbb{Z}/p^\gamma\mathbb{Z}$

Figure: For $p = 3$, tree $\mathcal{T}_{l,J}$ with $\gamma = 5$, $l = \{0, 2, 4\}$, $J = \{1, 3\}$.
Compact open spectral sets \mathbb{Q}_p

W. l. o. g, we assume that Ω is of the form

$$\Omega = \bigsqcup_{c \in C} (c + p^\gamma \mathbb{Z}_p),$$

where $\gamma \geq 1$ is an integer and $C \subset \{0, 1, \cdots, p^\gamma - 1\}$.

Theorem (Fan-F-Shi) The following are equivalent.

1. \mathcal{T}_C is a p-homogenous tree.
2. Ω is p-homogenous.
3. Ω tiles \mathbb{Q}_p.
4. Ω is a spectral set in \mathbb{Q}_p.
Outline

Question

Preliminaries

Fuglede Conjecture for Compact Open Set in \mathbb{Q}_p

Geometry of Compact Open Spectral Set

Spectra and Translates

Fuglede Conjecture on \mathbb{Q}_p
Spectra and Translates

For a subset $\Omega \subset \mathbb{Q}_p$, the set of admissible p-orders of Ω:

$$l_{\Omega} := \{ i \in \mathbb{Z}, \exists x, y \in \Omega \text{ such that } |x - y|_p = p^{-i} \}.$$

Remark

- For compact open Ω, $\exists \gamma \in \mathbb{Z}$ such that $i \in l_{\Omega}$ if $i \geq \gamma$.
- For p-homogenous compact open set Ω, an integer $i \in l_{\Omega}$ iff the balls of radius p^{-i} in the tree T_{Ω} has p descendants.
- For two p-homogenous compact open set Ω and Ω', $l_{\Omega} = l_{\Omega'}$ iff \exists isometric transformation $f : \mathbb{Q}_p \to \mathbb{Q}_p$ such that $f(\Omega) = \Omega'$.
Spectra and Translates

For a discrete subset E in \mathbb{Q}_p, we call E a uniformly discrete set if l_E is upper bounded. For each integer n, denote

$$l^n_E := \{ i \in l_E : i \geq -n \}.$$

A uniformly discrete set E is called p-homogenous discrete if

$$\#(E \cap B(a, p^n)) = p^{\#l^n_E} \text{ or } 0, \quad \forall a \in \mathbb{Q}_p.$$

Remark
Let E and E' be two p-homogenous discrete subset in \mathbb{Q}_p. Then $l_E = l_{E'}$ iff \exists isometric transformation $f : \mathbb{Q}_p \rightarrow \mathbb{Q}_p$ such that $f(E) = E'$.
Spectra and Translates

Theorem (Fan-F-Shi)

Let Ω be a p-homogenous compact open set. Assume that Ω is a spectral pair and (Ω, T) is a tiling pair.

- Each spectrum Λ is p-homogenous discrete with $I_{\Lambda} = -(I_\Omega + 1)$.
- Each translate T is p-homogenous discrete with $I_T = \mathbb{Z} \setminus I_\Omega$.

Spectra and Translates

Theorem (Fan-F-Shi)

Let Ω be a p-homogeneous compact open set in \mathbb{Q}_p.

- Subject to an isometric bijection,

$$\Lambda = \sum_{i \in I_\Omega} \mathbb{Z}/p\mathbb{Z} \cdot p^{-i-1} \subset \mathbb{Q}_p$$

is the unique spectrum of Ω.

- Subject to an isometric bijection,

$$T = \sum_{i \notin I_\Omega} \mathbb{Z}/p\mathbb{Z} \cdot p^i \subset \mathbb{Q}_p$$

is the unique tiling complement of Ω.
Spectra and Translates

\[\Omega = 2 + 4\mathbb{Z}_2 \sqcup 3 + 4\mathbb{Z}_2 \]

Figure: Consider the translate \(T \) of \(\Omega \) as an infinite tree and the points of \(T \) are the boundary points of the tree.
Outline

Question

Preliminaries

Fuglede Conjecture for Compact Open Set in \mathbb{Q}_p
Geometry of Compact Open Spectral Set
Spectra and Translates

Fuglede Conjecture on \mathbb{Q}_p
Fuglede Conjecture on \(\mathbb{Q}_p \)

A set \(\Omega \subset \mathbb{Q}_p \) is called an almost compact open set, if \(\exists \) compact open \(\Omega' \subset \mathbb{Q}_p \) such that

\[
\text{m}(\Omega \setminus \Omega') = \text{m}(\Omega' \setminus \Omega) = 0.
\]

Theorem

A Borel set \(\Omega \in \mathbb{Q}_p \) is a spectral set if and only if it tiles \(\mathbb{Q}_p \). Moreover, \(\Omega \) is an almost compact open set.

Theorem

A subset \(E \) of \(\mathbb{Q}_p \) is a spectrum iff it is a translate. Moreover, it is a \(p \)-homogenous discrete subset of \(\mathbb{Q}_p \).
Idea of Proof

- Calculate the densities of spectrum Λ and translate T.
- Consider μ_Λ and μ_T as distributions in \mathbb{Q}_p (continuous linear functionals on space of the local constant function with compact support). Fourier analysis on \mathbb{Q}_p (See Ableverio Khrennikov and Shelkovich’ s book 2010, Vladimirov and Volovich and Zelenov’ s book 1994).
- Analyze the zeros of $\hat{\mu}_\Lambda$ and $\hat{\mu}_T$. Obtain the structure of Λ and T (p-homogenous discrete).
The end

Thank you!