
Order, type and cotype of growth
for p-adic entire functions

Kamal Boussaf, Abdelbaki Boutabaa
and Alain Escassut

We denote by IK an algebraically closed field of
characteristic 0, complete with respect to an ultra-
metric absolute value | . |. Analytic functions inside
a disk or in the whole field IK were introduced and
studied in many books. Given α ∈ IK and R ∈ IR∗+,
we denote by d(α,R) the disk {x ∈ IK | |x−α| ≤ R},
by d(α,R−) the disk {x ∈ IK | |x − α| < R}, by
C(α, r) the circle {x ∈ IK | |x− α| = r}, by A( IK)
the IK-algebra of analytic functions in IK (i.e. the
set of power series with an infinite radius of con-
vergence) and by M( IK) the field of meromorphic
functions in IK (i.e. the field of fractions of A( IK)).
Given f ∈ M( IK), we will denote by q(f, r) the
number of zeros of f in d(0, r), taking multiplicity
into account and by u(f, r) the number of distinct
multiple zeros of f in d(0, r). Throughout the paper,
log denotes the Neperian logarithm.

Here we mean to introduce and study the notion
of order of growth and type of growth for functions
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of order t. We will also introduce a new notion of
cotype of growth in relation with the distribution of
zeros in disks which plays a major role in processes
that are quite different from those in complex analy-
sis. This has an application to the question whether
an entire function can be devided by its derivative
inside the algebra of entire functions.

Similarly to the definition known on complex
entire functions, given f ∈ A( IK), the superior limit

lim sup
r→+∞

log(log(|f |(r)))
log(r)

is called the order of growth of f or the order of f
in brief and is denoted by ρ(f). We say that f has
finite order if ρ(f) < +∞.

Theorem 1: Let f, g ∈ A( IK). Then:
ρ(f + g) ≤ max(ρ(f), ρ(g)),
ρ(fg) = max(ρ(f), ρ(g)),

Corollary 1.1: Let f, g ∈ A( IK). Then ρ(fn) =
ρ(f) ∀n ∈ IN∗. If ρ(f) > ρ(g), then ρ(f + g) =
ρ(f).

Remark: ρ is an ultrametric extended semi-norm.
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Notation: Given t ∈ [0,+∞[, we denote byA( IK, t)
the set of f ∈ A( IK) such that ρ(f) ≤ t and we set

A0( IK) =
⋃

t∈[0,+∞[

A( IK, t).

Corollary 1.2. For any t ≥ 0, A( IK, t) is a IK-
subalgebra of A( IK). If t ≤ u, then
A( IK, t) ⊂ A( IK, u) and A0( IK) is also a
IK-subalgebra of A( IK).

Theorem 2 Let f ∈ A( IK) and let P ∈ IK[x].
Then
ρ(P ◦ f) = ρ(f) and ρ(f ◦ P ) = deg(P )ρ(f).

Theorem 3: Let f, g ∈ A( IK) be transcendental.
If ρ(f) 6= 0, then ρ(f ◦ g) = +∞. If ρ(f) = 0, then
ρ(f ◦ g) ≥ ρ(g).
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Theorem 4 Let f ∈ A( IK) be not identically zero.
If there exists s ≥ 0 such that

lim sup
r→+∞

(q(f, r)
rs

)
< +∞

then ρ(f) is the lowest bound of the set of s ∈ [0,+∞[
such that

lim sup
r→+∞

(q(f, r)
rs

)
= 0.

Moreover, if

lim sup
r→+∞

(q(f, r)
rt

)
is a number b ∈]0,+∞[, then ρ(f) = t. If there
exists no s such that

lim sup
r→+∞

(q(f, r)
rs

)
< +∞,

then ρ(f) = +∞.

Example: Suppose that for each r > 0, we have
q(f, r) ∈ [rt log r, rt log r + 1]. Then of course, for
every s > t, we have

lim sup
r→+∞

q(f, r)
rs

= 0
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and lim sup
r→+∞

q(f, r)
rt

= +∞, so there exists no t > 0

such that
q(f, r)
rt

have non-zero superior limit b <
+∞.

Definition and notation: Let t ∈ [0,+∞[ and
let f ∈ A( IK) of order t. We set

ψ(f) = lim sup
r→+∞

q(f, r)
rt

and call ψ(f) the cotype of f .

Theorem 5 Let f, g ∈ A0( IK) be such that
ρ(f) = ρ(g). Then

max(ψ(f), ψ(g)) ≤ ψ(fg) ≤ ψ(f) + ψ(g).

Theorem 6 is similar to a well known statement
in complex analysis and its proof also is similar when
ρ(f) < +∞ [10] but is different when ρ(f) = +∞.

Theorem 6 Let f(x) =
+∞∑
n=0

anx
n ∈ A( IK). Then

ρ(f) = lim sup
n→+∞

( n log(n)
− log |an|

)
.
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Remark: Of course, polynomials have a growth
order equal to 0. On IK as on lC we can easily
construct transcendental entire functions of order 0
or of order ∞.

Example 1: Let (an)n∈ IN be a sequence in IK
such that − log |an| ∈ [n(log n)2, n(log n)2+1]. Then
clearly,

lim
n→+∞

log |an|
n

= −∞

hence the function
∞∑
n=0

anx
n has radius of conver-

gence equal to +∞. On the other hand,

lim
n→+∞

n log n
− log |an|

= 0

hence ρ(f) = 0.

Example 2: Let (an)n∈ IN be a sequence in IK
such that − log |an| ∈ [n

√
log n, n

√
log n+ 1]. Then

lim
n→+∞

log |an|
n

= −∞

again and hence the function
∞∑
n=0

anx
n has radius of
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convergence equal to +∞. On the other hand,

lim
n→+∞

( n log n
− log |an|

)
= +∞

hence ρ(f) = +∞.

Here, we must recall a theorem proven in 2010
to characterize meromorphic admitting a primitive:

Theorem 7: Let f ∈ M( IK). Then f admits
primitives if and only if all its residues are null.

The following theorem was proven in 2011 with
help of Jean-Paul Bezivin:

Theorem 8: Let f ∈ M( IK). Suppose that there
exists s ∈]0,+∞[ such that u(f, r) < rs ∀r > 1.
Then, for every b ∈ IK, f ′ − b has infinitely many
zeros.

Thanks to Theorem 8, we can prove Theorem 9:

Theorem 9: Let f = g
h ∈M( IK) with g ∈ A( IK)

and h ∈ A0( IK) and ψ(h) < +∞. Then for every
b ∈ IK, f ′ − b has infinitely many zeros.
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Proof: Set t = ρ(h). There exists ` > ψ(h) such
that q(r, h) ≤ `rt ∀r > 1. Consequently, taking s > t
big enough, we have u(f, r) < rs ∀r > 1 and hence
f satisfies the hypotheses of Theorem 8. Therefore,
for every b ∈ K, f ′ − b has infinitely may zeros.

Corollary 9.1: Let f = g
h ∈ M( IK) have all its

residues null, with g ∈ A( IK) and h ∈ A0( IK) and
ψ(h) < +∞. Then for every b ∈ IK, f − b has
infinitely many zeros.

Remark: Consider a function f of the form∑∞
n=1

1
(x−an)2 with |an| = nt. Clearly f belongs to

M( IK), all residues are null, hence f admits primi-
tives. Next, primitives satisfy the hypothesis of The-
orem 8. Consequently, f takes every value infinitely
many times. Therefore, f cannot be of the form P

h
with P ∈ IK[x] and h ∈ A( IK).
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Definition and notation: In complex analysis,
the type of growth is defined for an entire function
of order t as

σ(f) = lim sup
r→+∞

log(Mf (r))
rt

,

with t < +∞. Of course the same notion may be
defined for f ∈ A( IK). Given f ∈ A0( IK) of order

t, we set σ(f) = lim sup
r→+∞

log(|f |(r))
rt

and σ(f) is called

the type of growth of f .

Similarly, we set σ̃(f) = lim inf
r→+∞

log(|f |(r))
rt

.

Theorem 10: Let f, g ∈ A0( IK). Then σ(fg) ≤
σ(f) + σ(g) and σ(f + g) ≤ max(σ(f), σ(g)). If
ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤ σ(fg) and if
c|f |(r) ≥ |g|(r) with c > 0 when r is big enough,
then σ(f) ≥ σ(g).

Corollary 10.1: Let f, g ∈ A0( IK) be such that
ρ(f) = ρ(g) and σ(f) > σ(g). Then σ(f+g) = σ(f).
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Theorem 11: Let f(x) =
∞∑
n=0

anx
n ∈ A0( IK) such

that ρ(f) ∈]0,+∞[. Then

σ(f)ρ(f)e = lim sup
n→+∞

(
n n
√
|an|t

)
.

Notation: Let f ∈ A( IK), let (an)n∈ IN be the se-
quence of zeros of f with |an| ≤ |an+1|, n ∈ IN
and for each n ∈ IN, let wn be the multiplicity
order of an. For every r > 0, let k(r) be the in-
teger such that |an| ≤ r ∀n ≤ k(r) and |an| >
r ∀n > k(r). . We set ψ(f, r) =

∑k(r)
n=0

wn
rt and

σ(f, r) =
∑k(r)
n=0

wn(log(r)−log(cn))
rt .

Theorem 12: Let f ∈ A0( IK) be not identically
zero. Then

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(
eσ(f)− σ̃(f)

)
.

Moreover, if ψ(f) = limr→+∞
q(f,r)
rρ(f)

or if
σ(f) = limr→+∞

log(|f |(r))
rρ(f)

, then ψ(f) = ρ(f)σ(f).

Proof: Without loss of generality we can assume
that f(0) 6= 0. Let t = ρ(f) and set ` = log(|f(0|).
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Let (an)n∈ IN be the sequence of zeros of f with
|an| ≤ |an+1|, n ∈ IN and for each n ∈ IN, let wn
be the multiplicity order of an. For every r > 0, let
k(r) be the integer such that |an| ≤ r ∀n ≤ k(r) and
|an| > r ∀n > k(r). Then by Theorem A, we have
log(|f |(r)) = `+

∑k(r)
n=0 wn(log(r)− log(|an|)) hence

σ(f) = lim sup
r→+∞

(`+
∑k(r)
n=0 wn(log(r)− log(|an|))

rt

)
.

Given r > 0, set cn = |an|, and let us keep the
notations above. Then

σ(f) = lim sup
r→+∞

σ(f, r), ψ(f) = lim sup
r→+∞

ψ(f, r).

First we will show the inequality ψ(f) ≥ ρ(f)σ(f).
Let us fix α > 0. We can write

σ(f, r) =
k( r
eα )∑

n=0

wn(log(r)− log( r
eα ))

rt

+
k( r
eα )∑
j=0

wj(log( r
eα )− log(cn))
rt
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+
∑

k( r
eα )<j≤k(r)

wj(log(r)− log(cj))
rt

hence

σ(f, r) ≤ α
k( r
eα )∑

n=0

wn
rt

+
k( r
eα )∑
j=0

wj(log( r
eα )− log(cn))
rt

hence

σ(f, r) ≤ αe−tα
k( r
eα )∑

n=0

wn
(re−α)t

+e−tα
k( r
eα )∑
j=0

wn(log( r
eα )− log(cn))

(re−α)t

and hence

σ(f, r) ≤ αψ(f, re−α) + e−tασ(f, re−α).

Therefore, passing to superior limits on both sides,
we have σ(f) ≤ αψ(f) + e−tασ(f) and hence

σ(f)(
1− e−tα

α
) ≤ ψ(f).
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That holds for all α > 0, hence we have supα>0
1−e−tα

α = t,
and therefore we have tσ(f) ≤ ψ(f), which proves
the inequality:

ρ(f)σ(f) ≤ ψ(f).

We will now show the upper bounds of ψ in various
cases. First we have

σ(f, r) =
k(r)∑
n=0

wn(log(r)− log( r
eα )) + (log( r

eα )− log(cn))
rt

≥
(
e−tα

)∑k( r
eα )

n=0 wn(log(r)− log( r
eα ))

( r
eα )t

+
(
e−tα

)∑k( r
eα )

n=0 wn(log( r
eα − log(cn))

( r
eα )t

hence

(1) σ(f, r) ≥ αe−tαψ(f,
r

eα
) + e−tασ(f,

r

eα
).

Particularly, from (1) we can derive

σ(f, r) ≥ αe−tαψ(f,
r

eα
))
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and therefore

(2) σ(f) ≥ αe−tαψ(f) + e−tασ̃(f).

But now, this holds for every α > 0, hence particu-
larly when αt = 1, we have

ρ(f)
(
eσ(f)− σ̃(f)

)
≥ ψ(f)

which is the left hand inequality of the general con-
clusion.

Now, suppose that σ(f) = limr→+∞
log(|f |(r))

rt ,
hence

σ(f) = lim
r→+∞

σ(f, r) = lim
r→+∞

σ(f, re−α), (α > 0).

Then, for every α > 0, we have
σ(f) = limr→+∞ σ(f, reα ), therefore σ(f)( e

tα−1
α ) ≥

ψ(f) and hence we obtain
ψ(f) ≤ tσ(f), i.e. ψ(f) ≤ ρ(f)σ(f).

Now, suppose that

ψ(f) = lim
r→+∞

k(r)∑
n=0

wn
rt

= lim
r→+∞

ψ(f, r).
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We can obviously find a sequence (rn)n∈ IN in ]0,+∞[
of limit +∞ such that σ(f) = limn→+∞ σ(f, rne−α).
Then, by (1) we have

σ(f, rn) ≥ αe−tαψ(f,
rn
eα

) + e−tασ(f,
rn
eα

)

hence

lim sup
n→+∞

σ(f, rn) ≥ αe−tαψ(f) + e−tασ(f)

and hence

σ(f) ≥ αe−tαψ(f) + e−tασ(f)

therefore ψ(f) ≤
(
etα−1
α

)
σ(f). Finally, ψ(f) ≤

ρ(f)σ(f).

Remark: 1) When neither σ nor ψ are obtained
as veritable limits when r tends to +∞, the method
does not let us prove that ψ = ρσ, the natural con-
jecture.

2) Concerning the upper bound
ψ(f) ≤ ρ(f)(eσ(f)− σ̃(f)) it is possible to improve
a bit this by defining the number u0 > 0 such that
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eu0(u0 − 1) = − σ̃(f)
σ(f) and putting α0 = u0

ρ(f) . Then
we have

ψ(f) ≤ eρ(f)α0σ(f)− σ̃(f)
α0

.

Corollary 12.1: Let f ∈ A( IK) be not identically
zero and have finite growth order. Then if σ(f) is
finite if and only if so is ψ(f).

Remark: The conclusions of Theorem 12 hold for
ψ(f) = σ(f) = +∞.

We will now present Example 3 where neither
ψ(f) nor σ(f) are obtained as limits but only as su-
perior limits: we will show that the equality ψ(f) =
ρ(f)σ(f) holds again.

Example 3: Let rn = 2n, n ∈ IN and let f ∈
A( IK) have exactly 2n zeros in C(0, rn) and sat-
isfy f(0) = 1. Then q(f, rn) = 2n+1 − 1 ∀n ∈
IN. We can see that the function h(r) defined in

[rn, rn+1[ by h(r) =
q(f, r)
r

is decreasing and satis-

fies h(rn) =
2n+1 − 2

2n
and lim

r→rn+1

h(r)
r

=
2n+1 − 2

2n+1
.

Consequently, lim sup
r→+∞

h(r) = 2 and lim inf
r→+∞

h(r) = 1.
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Particularly, by Theorem 4, we have ρ(f) = 1
and of course ψ(f) = 2. On the other hand, we can
show that σ(f) = 2.

Now, Theorem 12 and Example 3 suggest the
following conjecture:

Conjecture 1: Let f ∈ A0( IK) be such that ei-
ther σ(f) < +∞ or ψ(f) < +∞. Then ψ(f) =
ρ(f)σ(f).

Although we can’t yet prove Conjecture C1, we
will show the following enquality:

Now, by Corollary 9.1, we can also state Corol-
lary 12.2:

Corollary 12.2: Let f = g
h ∈M( IK), with g, h ∈

A( IK) not identically zero and be such that h has
finite order of growth and and finite type of growth.
Then f ′ takes every value b ∈ IK infinitely many
times.

We will now consider derivatives.

Theorem 13: Let f ∈ A( IK) be not identically
zero. Then ρ(f) = ρ(f ′).
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Corollary 13.1 The derivation on A( IK) re-
stricted to the algebra A( IK, t) (resp. to A0( IK))
provides that algebra with a derivation.

In complex analysis, it is known that if an entire
function f has order t < +∞, then f and f ′ have
same type. We will check that it is the same here.

Theorem 14: Let f ∈ A( IK) be not identically
zero, of order t ∈]0,+∞[. Then σ(f) = σ(f ′).

By Theorems 12, 13, 14 we can now derive
Corollary 14.1

Corollary 14.1: Let f ∈ A0( IK) be not identically
zero, of order t < +∞. Then
ρ(f)σ(f) ≤ ψ(f ′) ≤ eρ(f)σ(f),
|ψ(f ′)− ψ(f)|∞ ≤ (e− 1)ρ(f)σ(f) and

1
e−1 ≤

ψ(f ′)
ψ(f) ≤ e− 1.

Corollary 14.2: Let f ∈ A0( IK) be not identically
zero, of order t < +∞. Then ψ(f) is finite if and
only if so is ψ(f ′).
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Corollary 14.3: Let f ∈ A0( IK) be not identically

zero, of order t < +∞. If ψ(f) = lim
r→+∞

q(f, r)
t

or if

ψ(f ′) = lim
r→+∞

q(f ′, r)
rt

, then ψ(f) ≤ ψ(f ′).

Moreover the equality ψ(f ′) = ψ(f) holds in each
one of the following four hypotheses:
a) ψ(f) = lim

r→+∞
ψ(f, r) and ψ(f ′) = lim

r→+∞
ψ(f ′, r),

b) ψ(f) = lim
r→+∞

ψ(f, r) and σ(f ′) = lim
r→+∞

σ(f ′, r),

c) σ(f) = lim
r→+∞

σ(f, r) and σ(f ′) = lim
r→+∞

σ(f ′, r),

d) σ(f) = lim
r→+∞

σ(f, r) and ψ(f ′) = lim
r→+∞

ψ(f ′, r).

Conjecture 1 suggests and implies the following
Conjecture 2:

Conjecture 2: ψ(f) = ψ(f ′) ∀f ∈ A0( IK).

Now, by Theorems 13 and 14 we can state
Corollary 14.4

Corollary 14.4: Let f = g
h ∈ M( IK) be not

identically zero, with g, h ∈ A( IK), having all
residues null and such that h has finite order of
growth and finite type of growth. Then f takes every
value b ∈ IK infinitely many times.
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Theorem 15: Let f, g ∈ A( IK) be transcendental
and of same order t ∈ [0,+∞[. Then for every ε > 0,

lim sup
r→+∞

(rεq(g, r)
q(f, r)

)
= +∞.

Remark: Comparing the number of zeros of f ′ to
this of f inside a disk is very uneasy. Now, we can
give some precisions. By Theorem 14 we can derive
Corollary 16.1.

Corollary 15.1: Let f ∈ A0( IK) be not affine.
Then for every ε > 0, we have

lim sup
r→+∞

(rεq(f ′, r)
q(f, r)

)
= +∞

and

lim sup
r→+∞

(rεq(f, r)
q(f ′, r)

)
= +∞.

We can now give a partial solution to a prob-
lem that arose in the study of zeros of derivatives
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of meromorphic functions: given f ∈ A( IK), is it
possible that f ′ divides f in the algebra A( IK)?

Theorem 16: Let f ∈ A( IK) \ IK[x]. Suppose
that for some number s > 0 we have
lim sup
r→+∞

|q(f, r)|rs > 0 (where |q(f, r)| is the absolute

value of q(f, r) defined on IK). Then f ′ has in-
finitely many zeros that are not zeros of f .

Remark: It is possible to deduce the proof of The-
orem 14 by using Lemma 1.4 in [3].

Corollary 16.1: Let f ∈ A0( IK). Then f ′ has
infinitely many zeros that are not zeros of f .

Proof: Indeed, let f be of order t. By Theorem

4 lim sup
r→+∞

q(f, r)
rt

is a finite number and therefore

lim sup
r→+∞

|q(f, r)|rt > 0.

Corollary 16.2 Let f ∈ A0( IK). Then f ′ does
not divide f in A( IK).

Corollary 16.3 is a partial solution for the p-adic
Hayman conjecture when n = 1, which is not solved
yet.
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Corollary 16.3 Let f ∈M( IK) be such that

lim sup
r→+∞

|q( 1
f
, r)|rs > 0

for some s > 0. Then ff ′ has at least one zero.

Proof: Indeed, suppose that ff ′ has no zero. Then

f is of the form
1
h

with h ∈ A( IK) and f ′ = − h
′

h2

has no zero, hence every zero of h′ is a zero of h, a
contradiction to Theorem 17 since
lim supr→+∞ |q(h, r)|rs > 0.

Remarks: Concerning complex entire functions,
we check that the exponential is of order 1 but is
divided by its derivative in the algebra of complex
entire functions.

It is also possible to derive Corollary 16.3 from
Theorem 1 in the paper by Jean-Paul Bezivin, Ka-

mal Boussaf and me. Indeed, let g =
1
f

. By The-

orem 4, lim sup
r→+∞

q(f, r)
rt

is a finite number. Conse-

quently, there exists c > 0 such that
q(f, r) ≤ crt ∀r > 1 and therefore the number of
poles of g in d(0, r) is upper bounded by crt when-
ever r > 1. Consequently, we can apply Theorem
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8 and hence the meromorphic function g′ has in-
finitely many zeros. Now, suppose that f ′ divides f
in A( IK). Then every zero of f ′ is a zero of f with

an order superior, hence
f ′

f2
has no zero, a contra-

diction.
If the residue characteristic of IK is p 6= 0, we

can easily construct an example of entire function
f of infinite order such that f ′ does not divide f

in A( IK). Let f(x) =
∞∏
n=0

(
1− x

αn

)pn with |αn| =

n + 1. We check that q(f, n + 1) =
n∑
k=0

pk is prime

to p for every n ∈ IN. Consequently, Theorem 16
shows that f is not divided by f ′ in A( IK). On the
other hand, fixing t > 0, we have

q(f, n+ 1)
(n+ 1)t

≥ pn

(n+ 1)t

hence

lim sup
r→+∞

q(f, r)
rt

= +∞ ∀t > 0

therefore, f is not of finite order.

Theorem 16 suggests the following conjecture:
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Conjecture 3 Given f ∈ A( IK) (other than
(x − a)m, a ∈ IK, m ∈ IN) there exists no h ∈
A( IK) such that f = f ′h.
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