Convergence of Measures in a Non-Archimedean Stochastic Setting

Erik Makino Bakken1

Joint work with Trond Digernes1 and David Weisbart2

1Department of Mathematical Sciences
The Norwegian University of Science and Technology (NTNU) Trondheim, Norway

2Department of Mathematics
University of California, Riverside

International Conference on p-ADIC MATHEMATICAL PHYSICS AND ITS APPLICATIONS, Belgrade
We will define a random walk and show convergence to a Brownian motion given by Varadarajan [VSV97]. The convergence is in the sense of weak convergence of probability measures.

Can be used to prove that certain quantum Hamiltonians can be approximated by finite quantum systems.
Schrödinger operator

- \(H = P^\alpha + V \), acting on \(L^2(X^d) \) where \(X = \mathbb{R} \) or \(X = K \), a local field. For simplicity we will work in dimension 1 (\(d = 1 \)).

- \(P = \mathcal{F}^{-1} Q \mathcal{F} \), \(Q = \) multiplication by the absolute value of the coordinate: \((Qf)(x) = |x| f(x) \).

- \(\alpha \) : a positive real number. If \(X = \mathbb{R} \) and \(\alpha = 2 \), we recover the Laplacian: \(P^2 = -\Delta \).

- \(V \) (potential): multiplication by a continuous function \(v \) which goes to infinity at infinity, implying discrete spectrum for \(H \).
Local fields

- **K:** a local field, i.e., a non-discrete, totally disconnected, locally compact field.

Two main types of local fields:
- **char $K = 0$:** K is a finite extension of \mathbb{Q}_p for some p.
- **char $K > 0$:** K is isomorphic to the field of Laurent series over a finite field \mathbb{F}_q, where $q = p^f$, $p =$ char K.

- **$| \cdot |$:** canonical absolute value, induced by the Haar measure. It defines the topology, and is non-Archimedean.

- **$O = \{ x \in K : |x| \leq 1 \}$:** a compact sub-ring of K called the ring of integers. It is a discrete valuation ring, i.e., a principal ideal domain with a unique maximal ideal.

- **$P = \{ x \in K : |x| < 1 \}$:** the unique maximal ideal of O, called the prime ideal. We have $P = \beta O$ for some $\beta \in O$. Such a β is called a **uniformizer**.

- **O/P is a finite field.** If $q = p^f$ is the number of elements in O/P, then $|\beta| = 1/q$ for any uniformizer β.
If S is a complete set of representatives for O/P, every $x \in K$ can be written uniquely in the form

$$x = \beta^{-m}(x_0 + x_1 \beta + x_2 \beta^2 + \cdots),$$

where $m \in \mathbb{Z}$, $x_j \in S$, $x_0 \not\in P$. With x written in this form, we have $|x| = q^m$. So \(\text{range}(\cdot |) = \{q^N : N \in \mathbb{Z}\}.\)
Fix a Haar measure μ such that $\mu(O) = 1$, and define the Fourier transform \mathcal{F} by

$$\mathcal{F}f(\xi) = \int_K f(x) \chi(-x\xi) \, dx$$

for a suitably chosen additive character χ. For our setup it will be essential to work with a character of rank 0.\(^1\)

\(^{1}\)rank$(\chi) = \max\{r \in \mathbb{Z} : \chi|_{B_r} \equiv 1\}$, $B_r = \{x \in K : |x| \leq q^r\}$.
Finite model

- $B_n = \beta^{-n}O =$ ball of radius q^n: an open additive subgroup of K.
- $G_n = B_n/B_{-n}$: a finite group with q^{2n} elements ($n \geq 0$).
- Each element of G_n has a unique representative of the form

 $a_{-n}\beta^{-n} + a_{-n+1}\beta^{-n+1} + \cdots + a_{-1}\beta^{-1} + a_0 + a_1\beta + \cdots$

 $+ a_{n-2}\beta^{n-2} + a_{n-1}\beta^{n-1}$.

 We denote the set of these representatives by X_n, and give it the group structure inherited from G_n.

- Haar measure μ_n on G_n:

 $\mu_n(\{x + H_n\}) = \mu(x + H_n) = \mu(H_n) = q^{-n}$, $\{x + H_n\} \in G_n$.

 So each point $\{x + H_n\}$ of G_n has mass q^{-n}, and the total mass of G_n is $q^{2n} \cdot q^{-n} = q^n$.

2For convenience we often write $H_n = B_{-n}$; so for instance we have $G_n = H_{-n}/H_n$.
\textbullet \ L^2\text{-isometric imbedding } L^2(G_n) \to L^2(K):

\[\mathbf{1}_{\{x+H_n\}} \in L^2(G_n) \mapsto \mathbf{1}_{x+H_n} \in L^2(K). \]

An operator on \(L^2(G_n) \) is regarded as an operator on \(L^2(K) \) via this imbedding, by setting it equal to 0 on the orthogonal complement of the image of \(L^2(G_n) \).
Important subspaces of $L^2(K)$

- $C_n = \{f \in L^2(K) | \text{supp}(f) \subset B_n\}$. The corresponding orthogonal projection is denoted by C_n and is given by: $C_n f = 1_{B_n} f$.

- $S_n = \{f \in L^2(K) | f \text{ is locally constant of index } \leq q^{-n}\}$. The corresponding orthogonal projection is denoted by S_n and is given by:

$$ (S_n f)(x) = q^n \int_{H_n} f(x + y) \, dy = \frac{1}{\mu(H_n)} \int_{H_n} f(x + y) \, dy = \text{ave}(f, n, x), $$

where we have introduced the notation $\text{ave}(f, n, x)$ for the average value of f over $x + H_n$.

- $D_n = C_n \cap S_n$. The corresponding orthogonal projection is denoted by D_n.

$L^2(G_n)$ is mapped onto D_n via the isometric imbedding mentioned above. Thus $L^2(G_n)$ can be thought of as the set of functions on K which have support in B_n and which are invariant under translation by elements of $H_n (= B_{-n})$.
Commutation relations

\[D_n = C_n S_n = S_n C_n \]
\[\mathcal{F} C_n = S_n, \quad \mathcal{F} S_n = C_n, \quad \mathcal{F} D_n = D_n \]
\[\mathcal{F} C_n = S_n \mathcal{F}, \quad \mathcal{F} S_n = C_n \mathcal{F}, \quad \mathcal{F} D_n = D_n \mathcal{F} \]
Fourier transform at the finite level

Let as before χ be a rank zero character on K. The bi-character $(x, y) \mapsto \chi(xy)$ descends to a non-degenerate bi-character on $G_n = B_n / B_{-n}$, thus the natural choice for an L^2-isometric Fourier transform on $X_n \cong G_n$ is

$$(F_n f)(x) = \frac{1}{\sqrt{|X_n|}} \sum_{y \in X_n} f(y) \chi(-xy) = q^{-n} \sum_{y \in X_n} f(y) \chi(-xy), \quad x \in X_n, \quad f \in L^2(X_n).$$

Crucial fact:
The Fourier transform \mathcal{F} on K descends to the Fourier transform \mathcal{F}_n on X_n:

$$\mathcal{F}|_{D_n} = \mathcal{F}_n, \text{ i.e., } \mathcal{F}_n = \mathcal{F} D_n = D_n \mathcal{F}.$$
Dynamical operators at the finite level

The finite operators are obtained through compression by the projection D_n:

$$V_n = D_n V D_n, \quad Q_n = D_n Q D_n, \quad P_n = D_n P D_n = F_n^{-1} Q_n F_n$$

We have, for $f \in L^2(G_n)$:

$$(V_n f)(x) = v_n(x) f(x), \quad v_n(x) = \frac{1}{\mu(H_n)} \int_{x+H_n} v(h) \, dh$$

$$(Q_n f)(x) = r_n(x) f(x), \quad r_n(x) = \frac{1}{\mu(H_n)} \int_{x+H_n} |h| \, dh$$

$$= \begin{cases}
|x|, & |x| > q^{-n} \\
\text{ave}(|x|, n, 0), & |x| \leq q^{-n}
\end{cases}$$

$$H_n = P_n^\alpha + V_n = F_n^{-1} Q_n^\alpha F_n + V_n \text{ (finite Hamiltonian.)}$$
Let $D[0, T]$ be the set of Skorokhod functions on $[0, T]$, that is, the space of all K valued functions ω on $[0, T]$ which are right continuous and where the left limit exists:

- $\omega(t^+) = \omega(t)$ for $0 \leq t < T$.
- $\omega(t^-)$ exists for $0 < t \leq T$.
- $\omega(T^-) = \omega(T)$.
Let $\omega_1, \omega_2 \in D[0, T]$. Then a metric is defined by

$$d(\omega_1, \omega_2) = \inf_{\lambda \in \Lambda} \{ ||\lambda - I||_{\infty}, ||\omega_1 - \omega_2 \circ \lambda||_{\infty} \},$$

where Λ is the set of all strictly increasing, continuous mappings of $[0, T]$ into itself and I is the identity function. The Skorokhod space is separable, and it is complete in an equivalent metric.
The probability density for Brownian motion σ_t is given by Varadarajan [VSV97]:

$$\rho_t(x) = e^{-t|x|^\alpha}, \quad \sigma_t(x) = \left[\mathcal{F}^{-1} \rho_t \right](x).$$

We define it similarly for our finite models:

$$\rho_{n,t}(x) = c_{n,t} e^{-tr_{n}(x)\alpha}, \quad \sigma_{n,t}(x) = \left[\mathcal{F}^{-1}_{n} \rho_{n,t} \right](x),$$

where

$$r_n(x) = \begin{cases} |x|, & |x| > q^{-n} \\ \text{ave}(|x|, n, 0), & |x| \leq q^{-n}, \end{cases}$$

and $c_{n,t}$ is a positive number, adjusted so that $\rho_{n,t}(0) = 1$. The densities σ_t and $\sigma_{n,t}$ are positive with integral equal to 1.
Fix k time points t_1, \ldots, t_k. Define the measure $P_{a_n}^n$ on cylinder sets by

$$P_{a_n}^n(\omega(t_i) \in J_i) = \sum_{b_i \in J_i \cap X_n} \sigma_{n,t_1}(b_1-a_n) \cdots \sigma_{n,t_k-t_{k-1}}(b_k-b_{k-1}) q^{-nk},$$

where J_i are Borel sets. It satisfies the consistency conditions:

$$P_{a_n}^{n,t_\kappa(1), \ldots, t_\kappa(k)}(J_1 \times \cdots \times J_k) = P_{a_n}^{n,t_1, \ldots, t_k}(J_{\kappa^{-1}(1)} \times \cdots \times J_{\kappa^{-1}(k)})$$

for any permutation κ on $\{1, \ldots, k\}$, and where $J_i \ (1 \leq i \leq k)$ are Borel sets in K.

$$P_{a_n}^{n,t_1, \ldots, t_1}(J_1 \times \cdots \times J_k) = P_{a_n}^{n,t_1, \ldots, t_k, t_{k+1}, \ldots, t_{k+m}}(J_1 \times \cdots \times J_k \times K \times \cdots \times K),$$

m times

where $J_i \ (1 \leq i \leq k)$ are Borel sets in K.

By Kolmogorov, we get a probability measure $P_{a_n}^n$ on the set of all paths.
Let X_t be the stochastic process given by $X_t(\omega) = \omega(t)$.

Theorem

Let \mathbf{P}_0 be a measure on the space of all paths on $[0, T]$. If there exist constants $C, a, b, c > 0$ such that for all $0 \leq t_1 < t_2 < t_3 \leq T$,

$$E_{\mathbf{P}_0}(|X_{t_2} - X_{t_1}|^a|X_{t_3} - X_{t_2}|^b) \leq C(t_3 - t_1)^{1+c}.$$

Then there exists a unique probability measure \mathbf{P} on $D[0, T]$ which has the same finite-dimensional distributions as \mathbf{P}_0.

We have that

$$E_{\mathbf{P}_{a_n}}(|X_{t_2} - X_{t_1}|^k|X_{t_3} - X_{t_2}|^k) \leq A(t_3 - t_1)^{2k/\alpha},$$

so the Chentsov criterion is satisfied for $\alpha/2 < k < \alpha$. Thus \mathbf{P}_{a_n} gives full measure to all paths in $D[0, T]$ starting at a_n. Furthermore, it has support on the paths on the grid X_n.
The measure P_a from [VSV97] is constructed in a similar way: Fix k time points t_1, \ldots, t_k. Define the measure P_a on cylinder sets by

$$P_a(\omega(t_i) \in J_i) = \int_{J_1} \cdots \int_{J_k} \sigma_{t_1}(b_1-a) \cdots \sigma_{t_{k-1}t_{k-1}}(b_k-b_{k-1}) \, db_k \cdots db_1,$$

where J_i ($1 \leq i \leq k$) are Borel sets.

By using Kolmogorov and Chentsov we get the measure P_a on $D[0, T]$.
Definition

Let \((S, \mathcal{S})\) be a measure space. A sequence of probability measures \(P_k\) is said to converge weakly to \(P\) if
\[
\int f \, dP_k \to \int f \, dP
\]
for all bounded continuous functions \(f\) on \(S\). This will be denoted by \(P_k \Rightarrow P\).

The Portmanteau Theorem

The following are equivalent:

1. \(P_k \Rightarrow P\).
2. \[
\int f \, dP_k \to \int f \, dP
\]
 for all bounded, uniformly continuous functions \(f\).
3. \(P_k(A) \to P(A)\) for all measurable sets \(A\) with \(P(\partial A) = 0\).

We wish to prove that \(P_{a_n} \Rightarrow P_a\) when \(a_n \to a\).
Weak Convergence in $D[0, T]$

Definition

A sequence of probability measures P_m is tight if there for any $\epsilon > 0$ exists a compact set J such that $P_m(J) > 1 - \epsilon$ for all m.

Theorem

Suppose that P_m, P are probability measures on $D[0, T]$ such that

- $P_m^{t_1, \ldots, t_N} \Rightarrow P^{t_1, \ldots, t_N}$ for all t_1, \ldots, t_N in $[0, T]$.
- *The measures P_m are tight: There are constants $C, a, b, c > 0$ such that for all m and $0 \leq t_1 < t_2 < t_3 \leq T$,

$$E_{P_m}(|X_{t_2} - X_{t_1}|^a |X_{t_3} - X_{t_2}|^b) \leq C(t_3 - t_1)^{1+c},$$

then $P_m \Rightarrow P$.

Since our estimate for Chentsov’s criterion is independent of n, we know that the measures P_{an} are tight.
From Billingsley:

Theorem

Let \mathbf{P} be a probability measure, and let \mathbf{P}_m be a sequence of probability measures. Suppose that
- \mathcal{A} is a π-system
- Every open set is a countable union of elements in \mathcal{A}.

If $\mathbf{P}_m(A) \to \mathbf{P}(A)$ for all $A \in \mathcal{A}$, then $\mathbf{P}_m \Rightarrow \mathbf{P}$.

To prove that $\mathbf{P}_{a_n}^{n,t_1,...,t_k} \Rightarrow \mathbf{P}_a^{t_1,...,t_k}$, we only have to prove that

$$
\mathbf{P}_{a_n}^{n,t_1,...,t_k}(\omega(t_i) \in B_i) \Rightarrow \mathbf{P}_a^{t_1,...,t_k}(\omega(t_i) \in B_i)
$$

for all balls B_i, $1 \leq i \leq k$.

Theorem

We have that

$$
\mathbf{P}_{a_n}^n \Rightarrow \mathbf{P}_a
$$

when $a_n \to a$.

The conditional measure $P_{a,b,T}$ is defined in [VSV97] by

$$P_{a,b,T}(B) = P_a(B|\omega(T) = b).$$

Since we are conditioning on a set of measure 0, it is defined by probability densities. The Chentsov criterion holds [VSV97], so it gives full measure to the Skorokhod paths which start at a and end up at b at time T, and it models a Brownian motion in K going from a to b in time T.
We define the conditional measure $P^n_{a_n,b_n,T}$ of a Borel set B by

$$P^n_{a_n,b_n,T}(B) = \frac{P^n_{a_n}(B \cap (\omega(T) = b_n))}{P^n_{a_n}(\omega(T) = b_n)}.$$

It gives full measure to the Skorokhod paths which start at a_n and end up at b_n at time T.

We wish to prove that $P^n_{a_n,b_n,T} \Rightarrow P_{a,b,T}$ when $a_n \to a$ and $b_n \to b$. The proof for convergence of the finite-dimensional distributions goes exactly as for the unconditioned measures. The difficult part is tightness, and the proof is similar to the one in [DVV94].
Modulus of Continuity

Definition

The "modulus of continuity" for a Skorokhod path ω is

$$m(\omega : \delta) = \sup_{s_1 < s < s_2} \min \{|\omega(s_2) - \omega(s)|, |\omega(s) - \omega(s_1)|\}.$$

Theorem

Let P_k be a sequence of probability measures on $D[0, T]$.

TFAE:

- The sequence of measures P_k is tight.
- For every $\eta > 0$,

$$\lim_{\delta \to 0} P_k(\{\omega : m(\omega : \delta) \geq \eta\}) = 0$$

uniformly in k.
Comparison with Unconditioned Measure

Define

\[m_1(\omega : \delta) = \sup_{s_1 < s < s_2, s_2 - s_1 < \delta, s_2 \leq 3T/4} \min \{|\omega(s_2) - \omega(s)|, |\omega(s) - \omega(s_1)|\} \]

With \(A_1 = \{\omega : m_1(\omega : \delta) \geq \eta\} \), we first prove that

\[\lim_{\delta \to 0} P_{n, a_n, b_n, T}(A_1) = 0 \]

uniformly in \(n \). The advantage here is that \(3T/4 \) is far away from \(T \) where we are conditioning.

\[P_{n, a_n, b_n, T}(A_1) \leq CP_{a_n}(A_1) \]

for some constant \(C \). The measures \(P_{a_n} \) are tight so for every \(\eta > 0 \),

\[\lim_{\delta \to 0} P_{n, a_n, b_n, T}(A_1) \leq C \lim_{\delta \to 0} P_{a_n}(A_1) = 0 \]

uniformly in \(n \).
We can do the same over the interval \([T/4, T]\) by time-reversal:

\[x^*(s) = x(T - s - 0), \quad 0 \leq s < T \]

and \(x^*(T) = x(0)\). The time reversal is a Borel function which is involutive. Define the probability measure \(P^*(E) = P(E^*)\). With this definition

\[(P^n_{a_n,b_n,T})^* = P^n_{b_n,a_n,T} \]

This comes from stochastic continuity, which means that if \(s_i < s\), then

\[P^n_{a_n,b_n,T}(\omega : |X_s - X_{s_i}| > \epsilon) \to 0. \]

as \(s_i \to s\).

Theorem

We get that \(P^n_{a_n,b_n,T} \Rightarrow P_{a,b,T}\) when \(a_n \to a\) and \(b_n \to b\).
We have proved that \(P_{a_n, b_n, T} \Rightarrow P_{a, b, T} \) when \(a_n \to a \) and \(b_n \to b \). The convergence is also uniform when \(a \) and \(b \) vary in a compact set: If \(g \) is any bounded continuous function on \(D[0, T] \), then

\[
\int_{D[0, T]} g(\omega) \, dP^n_{a_n, b_n, T}(\omega) \to \int_{D[0, T]} g(\omega) \, dP_{a, b, T}(\omega)
\]

is uniform with respect to \(a \) and \(b \) varying in a compact set.
\[
e^{-tP_n^\alpha} g(x) = e^{-t\mathcal{F}_n^{-1}Q_n^\alpha} \mathcal{F}_n g(x) \\
= \mathcal{F}_n^{-1} e^{-tQ_n^\alpha} \mathcal{F}_n g(x) = [\mathcal{F}_n^{-1} e^{-t\mathcal{F}_n^\alpha} \ast g](x) = [\sigma_n, t \ast g](x), \\
e^{-(t/N)Q_n} e^{-(t/N)V_n} g(x) = \int_{G_n} \sigma_{n, t/N}(y-x) e^{-(t/N)v_n(y)} g(y) \, d\mu_n(y) \\
\left(e^{-(t/N)Q_n} e^{-(t/N)V_n} \right)^N g(x) \\
= \int_{G_n^N} \sigma_{n, t/N}(x-x_1) \cdots \sigma_{n, t/N}(x_{N-1} - x_N) \\
\cdot e^{-(t/N)\sum_{i=1}^N v_n(x_i)} g(x_N) \, d\mu_n(x_1) \cdots d\mu_n(x_N)
\]

By using the Trotter product formula one obtains Feynman-Kac.

\[
e^{-tH_n}(j_n, k_n) = \int_{D[0,t]} e^{-\int_0^t v_n(\omega(s)) \, ds} \, dP_{j_n,k_n,t}(\omega) \cdot \sigma_n, t(k_n - j_n) q^{-n}.
\]